Finite Vector Spaces and Certain Lattices

نویسنده

  • Thomas W. Cusick
چکیده

The Galois number Gn(q) is defined to be the number of subspaces of the n-dimensional vector space over the finite field GF (q). When q is prime, we prove that Gn(q) is equal to the number Ln(q) of n-dimensional mod q lattices, which are defined to be lattices (that is, discrete additive subgroups of n-space) contained in the integer lattice Z and having the property that given any point P in the lattice, all points of Z which are congruent to P mod q are also in the lattice. For each n, we prove that Ln(q) is a multiplicative function of q.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES

The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...

متن کامل

Lattice Structures and Spreading Models

We consider problems concerning the partial order structure of the set of spreading models of Banach spaces. We construct examples of spaces showing that the possible structure of these sets include certain classes of finite semi-lattices and countable lattices and all finite lattices.

متن کامل

ar X iv : m at h . FA / 0 50 86 50 v 1 3 1 A ug 2 00 5 LATTICE STRUCTURES AND SPREADING MODELS

We consider problems concerning the partial order structure of the set of spreading models of Banach spaces. We construct examples of spaces showing that the possible structure of these sets include certain classes of finite semi-lattices and countable lattices, and all finite lattices.

متن کامل

An equivalence functor between local vector lattices and vector lattices

We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...

متن کامل

Subspace Lattices of Finite Vector Spaces Are 5-generated

Let n ≥ 3. From the description of subdirectly irreducible complemented Arguesian lattices with four generators given by Herrmann, Ringel and Wille it follows that the subspace lattice of an n-dimensional vector space over a finite field is generated by four elements if and only if the field is a prime field. By exhibiting a 5-element generating set we prove that the subspace lattice of an n-di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1998